504 research outputs found

    A holistic scalable implementation approach of the lattice Boltzmann method for CPU/GPU heterogeneous clusters

    Get PDF
    This is the author accepted manuscript. The final version is available from MDPI via the DOI in this record.Heterogeneous clusters are a widely utilized class of supercomputers assembled from different types of computing devices, for instance CPUs and GPUs, providing a huge computational potential. Programming them in a scalable way exploiting the maximal performance introduces numerous challenges such as optimizations for different computing devices, dealing with multiple levels of parallelism, the application of different programming models, work distribution, and hiding of communication with computation. We utilize the lattice Boltzmann method for fluid flow as a representative of a scientific computing application and develop a holistic implementation for large-scale CPU/GPU heterogeneous clusters. We review and combine a set of best practices and techniques ranging from optimizations for the particular computing devices to the orchestration of tens of thousands of CPU cores and thousands of GPUs. Eventually, we come up with an implementation using all the available computational resources for the lattice Boltzmann method operators. Our approach shows excellent scalability behavior making it future-proof for heterogeneous clusters of the upcoming architectures on the exaFLOPS scale. Parallel efficiencies of more than 90% are achieved leading to 2,604.72 GLUPS utilizing 24,576 CPU cores and 2,048 GPUs of the CPU/GPU heterogeneous cluster Piz Daint and computing more than 6.8 · 109 lattice cells.This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89). In addition, this work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d68. We further thank the Max Planck Computing & Data Facility (MPCDF) and the Global Scientific Information and Computing Center (GSIC) for providing computational resources

    BioTorrents: A File Sharing Service for Scientific Data

    Get PDF
    The transfer of scientific data has emerged as a significant challenge, as datasets continue to grow in size and demand for open access sharing increases. Current methods for file transfer do not scale well for large files and can cause long transfer times. In this study we present BioTorrents, a website that allows open access sharing of scientific data and uses the popular BitTorrent peer-to-peer file sharing technology. BioTorrents allows files to be transferred rapidly due to the sharing of bandwidth across multiple institutions and provides more reliable file transfers due to the built-in error checking of the file sharing technology. BioTorrents contains multiple features, including keyword searching, category browsing, RSS feeds, torrent comments, and a discussion forum. BioTorrents is available at http://www.biotorrents.net

    Clinical map document based on XML (cMDX): document architecture with mapping feature for reporting and analysing prostate cancer in radical prostatectomy specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathology report of radical prostatectomy specimens plays an important role in clinical decisions and the prognostic evaluation in Prostate Cancer (PCa). The anatomical schema is a helpful tool to document PCa extension for clinical and research purposes. To achieve electronic documentation and analysis, an appropriate documentation model for anatomical schemas is needed. For this purpose we developed cMDX.</p> <p>Methods</p> <p>The document architecture of cMDX was designed according to Open Packaging Conventions by separating the whole data into template data and patient data. Analogue custom XML elements were considered to harmonize the graphical representation (e.g. tumour extension) with the textual data (e.g. histological patterns). The graphical documentation was based on the four-layer visualization model that forms the interaction between different custom XML elements. Sensible personal data were encrypted with a 256-bit cryptographic algorithm to avoid misuse. In order to assess the clinical value, we retrospectively analysed the tumour extension in 255 patients after radical prostatectomy.</p> <p>Results</p> <p>The pathology report with cMDX can represent pathological findings of the prostate in schematic styles. Such reports can be integrated into the hospital information system. "cMDX" documents can be converted into different data formats like text, graphics and PDF. Supplementary tools like cMDX Editor and an analyser tool were implemented. The graphical analysis of 255 prostatectomy specimens showed that PCa were mostly localized in the peripheral zone (Mean: 73% ± 25). 54% of PCa showed a multifocal growth pattern.</p> <p>Conclusions</p> <p>cMDX can be used for routine histopathological reporting of radical prostatectomy specimens and provide data for scientific analysis.</p

    From uncertainty to reward: BOLD characteristics differentiate signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reward value and uncertainty are represented by dopamine neurons in monkeys by distinct phasic and tonic firing rates. Knowledge about the underlying differential dopaminergic pathways is crucial for a better understanding of dopamine-related processes. Using functional magnetic resonance blood-oxygen level dependent (BOLD) imaging we analyzed brain activation in 15 healthy, male subjects performing a gambling task, upon expectation of potential monetary rewards at different reward values and levels of uncertainty.</p> <p>Results</p> <p>Consistent with previous studies, ventral striatal activation was related to both reward magnitudes and values. Activation in medial and lateral orbitofrontal brain areas was best predicted by reward uncertainty. Moreover, late BOLD responses relative to trial onset were due to expectation of different reward values and likely to represent phasic dopaminergic signaling. Early BOLD responses were due to different levels of reward uncertainty and likely to represent tonic dopaminergic signals.</p> <p>Conclusions</p> <p>We conclude that differential dopaminergic signaling as revealed in animal studies is not only represented locally by involvement of distinct brain regions but also by distinct BOLD signal characteristics.</p

    High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Get PDF
    BACKGROUND:A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue.RESULTS:Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.CONCLUSION:MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis

    Get PDF
    Background: TAR DNA binding protein, encoded by TARDBP, was shown to be a central component of ubiquitin-positive, tau-negative inclusions in frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). Recently, mutations in TARDBP have been linked to familial and sporadic ALS. Methodology/Principal Findings: To further examine the frequency of mutations in TARDBP in sporadic ALS, 279 ALS cases and 806 neurologically normal control individuals of European descent were screened for sequence variants, copy number variants, genetic and haplotype association with disease. An additional 173 African samples from the Human Gene Diversity Panel were sequenced as this population had the highest likelihood of finding changes. No mutations were found in the ALS cases. Several genetic variants were identified in controls, which were considered as non-pathogenic changes. Furthermore, pathogenic structural variants were not observed in the cases and there was no genetic or haplotype association with disease status across the TARDBP locus

    Adaptation of High-Growth Influenza H5N1 Vaccine Virus in Vero Cells: Implications for Pandemic Preparedness

    Get PDF
    Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 108 TCID50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes

    Association between novel TARDBP mutations and Chinese patients with amyotrophic lateral sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>TARDBP </it>mutations have been reported in patients with amyotrophic lateral sclerosis (ALS) in different populations except Chinese. The present aim is to investigate the association between <it>TARDBP </it>mutations and Chinese patients with ALS.</p> <p>Methods</p> <p>71 SALS patients and 5 FALS families with non-<it>SOD1 </it>mutations were screened for <it>TARDBP </it>mutations via direct sequencing.</p> <p>Results</p> <p>A novel heterozygous variation, Ser292Asn (875G>A), was identified in the proband and 4 asymptomatic relatives including the children of the dead patient from a FALS family. Thus the dead patient, the proband's brother, was speculated to carry Ser292Asn though his sample was unavailable to the detection. This variation was not found in 200 unrelated control subjects. A homology search of the TDP-43 protein in different species demonstrated that it was highly conserved. Also, it was predicted to be deleterious to protein function with SIFT-calculated probabilities of 0.00. Therefore, Ser292Asn is predicted to be a pathogenic mutation. In addition, we have found two silent mutations (Gly40Gly and Ala366Ala) and one novel polymorphism (239-18t>c).</p> <p>Conclusions</p> <p>The present data have extended the spectrum of <it>TARDBP </it>mutations and polymorphisms, and supported the pathological role of TDP-43 in Chinese ALS patients.</p

    To Fear is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls

    Get PDF
    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear

    Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches

    Get PDF
    BACKGROUND: For over 150 years, pathologists have relied on histomorphology to classify and diagnose neoplasms. Their success has been stunning, permitting the accurate diagnosis of thousands of different types of neoplasms using only a microscope and a trained eye. In the past two decades, cancer genomics has challenged the supremacy of histomorphology by identifying genetic alterations shared by morphologically diverse tumors and by finding genetic features that distinguish subgroups of morphologically homogeneous tumors. DISCUSSION: The Developmental Lineage Classification and Taxonomy of Neoplasms groups neoplasms by their embryologic origin. The putative value of this classification is based on the expectation that tumors of a common developmental lineage will share common metabolic pathways and common responses to drugs that target these pathways. The purpose of this manuscript is to show that grouping tumors according to their developmental lineage can reconcile certain fundamental discrepancies resulting from morphologic and molecular approaches to neoplasm classification. In this study, six issues in tumor classification are described that exemplify the growing rift between morphologic and molecular approaches to tumor classification: 1) the morphologic separation between epithelial and non-epithelial tumors; 2) the grouping of tumors based on shared cellular functions; 3) the distinction between germ cell tumors and pluripotent tumors of non-germ cell origin; 4) the distinction between tumors that have lost their differentiation and tumors that arise from uncommitted stem cells; 5) the molecular properties shared by morphologically disparate tumors that have a common developmental lineage, and 6) the problem of re-classifying morphologically identical but clinically distinct subsets of tumors. The discussion of these issues in the context of describing different methods of tumor classification is intended to underscore the clinical value of a robust tumor classification. SUMMARY: A classification of neoplasms should guide the rational design and selection of a new generation of cancer medications targeted to metabolic pathways. Without a scientifically sound neoplasm classification, biological measurements on individual tumor samples cannot be generalized to class-related tumors, and constitutive properties common to a class of tumors cannot be distinguished from uninformative data in complex and chaotic biological systems. This paper discusses the importance of biological classification and examines several different approaches to the specific problem of tumor classification
    corecore